Bac à Sable TNSI⚓︎
\begin{tikzpicture}
\tkzTabInit[espcl=6]
{$x$/1 , $f'(x)$/1 , $f(x)$/2}
{$0$ , $\sqrt{e}$ , $+\infty$}
\tkzTabLine{d,+,0,+,}
\tkzTabVar{D- / $-\infty$ , R/ , + / $0$ }
\tkzTabVal[draw]{1}{3}{0.4}{$1$}{$-e$}
\end{tikzpicture}
\begin{tikzpicture}
\newcommand*{ \E}{ \ensuremath{ \mathrm{e}}}.
\tkzTabInit{$x$ /1,$g'(x)$ /1,$g(x)$ /2}
{$-\infty$,$-2$,$0$,$+\infty$}
\tkzTabLine{,+,z,-,z,-}
\tkzTabVar{-/$-\infty$, +/$2$, R/, -/$-\infty$}
\tkzTabIma{2}{4}{3}{$0$}
\end{tikzpicture}
\begin{tikzpicture}
\tkzTabInit[espcl=6]
{$x$/1 , $f'(x)$/1 , $f(x)$/2}
{$0$ , $\sqrt{e}$ , $+\infty$}
\tkzTabLine{d,+,0,+,}
\tkzTabVar{D- / $-\infty$ , R/ , + / $0$ }
\tkzTabVal[draw]{1}{3}{0.4}{$1$}{$-e$}
\end{tikzpicture}
\begin{tikzpicture}
\tkzTabInit[lgt=3,espcl=1.5]
{$x$ / 1 , $f'(x)$ / 1, $f(x)=\sqrt{\dfrac{x-1}{x+1}}$ / 2 }
{$-\infty$, $-1$, $1$, $+\infty$}
\tkzTabLine
{ , + , d , h , d, +, }
\tkzTabVar
{ -/1 , +DH/$+\infty$, -C/0, +/1}
\end{tikzpicture}
\begin{tikzpicture}
\tkzTabInit[lgt=2.75]
{ $x$/1 , $f'(x)$/1 , $f(x) = tan(x)$/2 }
{ $0$, $\dfrac{\pi}{2}$, $\pi$}
\tkzTabLine
{ , + , d , + , }
\tkzTabVar
{ -/$0$ , +D-/$+\infty$/$-\infty$ , +/$0$}
\end{tikzpicture}
\begin{tikzpicture}
\tkzTabInit[espcl=6]
{$x$/1 , $f'(x)$/1 , $f(x)$/2}
{$0$ , $\sqrt{e}$ , $+\infty$}
\tkzTabLine{d,+,0,+,}
\tkzTabVar{D- / $-\infty$ , R/ , + / $0$ }
\tkzTabVal[draw]{1}{3}{0.4}{$1$}{$-e$}
\end{tikzpicture}
Ex
\begin{tikzpicture}
\tkzTabInit[lgt=3, espcl=6, deltacl=0.7]{$x$ /1, $(e^x)'=e^x$ /1, $e^x$ /1.5} {$-\infty$ , $+\infty$}
\tkzTabLine{, -,}
\tkzTabVar{-/ , +/ }
\tkzTabVal{1}{2}{0.3}{$0$}{1}
\tkzTabVal{1}{2}{0.6}{$1$}{$e$}
\end{tikzpicture}